LIMP- HANDBUCH

Impedanzmessung Thiele Small Parameter (TSP) RLC-Meter

Basismaterial ARTA-Handbücher & ARTA Kompendium Dr. Heinrich Weber, deutsche Bearbeitung und Ergänzungen Dr. Ivo Mateljan, englische Originalhandbücher © Weber/Mateljan

Version 2.53D, Januar 2025 (ARTA 1.9.8)

Änderungen Version 2.30D – ARTA 1.80

Kapitel	Hinweis zu Änderungen / Ergänzungen					
-	Separierung vom ARTA-Kompendium					
-	Neuerungen/Ergänzung in LIMP Vers. 1.8					
2.2.2	Kompensation von Messleitungen					
3.1	Vorbereitung der TSP-Messung (Anregungssignal, Messlage, Einspielen,)					
3.2	Einführung verschiedener Ersatzschaltbilder zur Ermittlung der TSP					
3.2	Ermittlung von R _E aus dem gemessenen Impedanzverlauf					
4.0	Overlays und Targets					
5.0	RLC-Meter, Ergänzungen					
6.0	Messgenauigkeit, Ergänzungen					

Änderungen Version 2.40D – ARTA 1.9.2

Kapitel	Hinweis zu Änderungen / Ergänzungen
2.2.1	Ergänzung des Abschnittes Kalibrierung um die Pegelkalibrierung
3.1.1	Aktualisierung der Normbezüge bzgl. des Messpegels
3.1.2	Aktualisierung der Normbezüge bzgl. einer Vorkonditionierung
3.1.4	Ergänzung der Ermittlung S _D aus zwei Messungen
3.5	Ergänzung der Methode "Fixed Mass"

Änderungen Version 2.51D – ARTA 1.9.4

Kapitel	Hinweis zu Änderungen / Ergänzungen				
3.5	Korrektur der Methode "Fixed Mass"				
3.5	Ergänzung "Plausibilität von Herstellerdaten"				

Änderungen Version 2.52D – ARTA 1.9.6

Kapitel	Hinweis zu Änderungen / Ergänzungen
3.1.1	Aktualisierung der Normbezüge bzgl. des Messpegels
3.1.2	Aktualisierung der Normbezüge bzgl. einer Vorkonditionierung
8.0	Literaturverzeichnis aktualisiert
Annex1	Kleinsignalbedingungen ergänzt

Änderungen Version 2.53D – ARTA 1.9.8

Kapitel	Hinweis zu Änderungen / Ergänzungen
3.6	SPL-Methode ergänzt

Inhalt

0.	Vorwort	4
1.	LIMP, Einleitung	4
1.1 1.2 1.3	Voraussetzungen für die Nutzung und Installation Erforderliches und nützliches Zubehör Pinbelegung von NF-Kabeln und NF-Steckern	4 4 6
2.	LIMP, Messprinzip und Messaufbau	7
2.1 2.1.1 2.1.2	Messprinzip und praktische Umsetzung Impedanzmessung am Kopfhörerausgang der Soundkarte Impedanzmessung mit Leistungsverstärker	7 7 9
2.2	LIMP, Bedienung	10
2.2.1 2.2.2	Grundeinstellung von LIMP Kompensation der Messleitungen	11 15
3.	LIMP, Ermittlung der Thiele-Small-Parameter	17
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	Vorbereitung der TSP-Messung Stärke des Anregungssignals Vorkonditionierung - Break In Einspannbedingungen und Messlage Ermittlung S _D Messung von R _E	17 17 19 20 21 22
3.1.6	Empfehlungen	23
3.2 3.3 3.4 3.5 3.6	TSP-Ermittlung, Volumenmethode (Closed Box) TSP-Ermittlung, Massemethode (Added Mass) TSP-Ermittlung, bekannte Membranmasse (Fixed Mass) TSP-Ermittlung, bekannter SPL (SPL-Methode)	24 27 29 30 33
4.	LIMP, Arbeiten mit Overlay und Target	33
5.	LIMP als RLC-Meter	35
6.	LIMP, Genauigkeit der Messung	39
7.	ARTA Application Notes	40
8.	Literatur	40
9.	Index	41
Anne	x - Kleinsignalbedingungen	42

0. Vorwort

Aufgrund des mittlerweile beträchtlichen Umfangs und der unübersichtlich gewordenen Struktur des ARTA-Kompendiums wurde seitens vieler Anwender eine Aufteilung in separate Handbücher gewünscht. Mit dem vorliegenden LIMP-Handbuch wird der erste Schritt in Richtung separater Handbücher eingeleitet.

LIMP ist ein Programm zur Messung von komplexen Impedanzen an Bauteilen (LCR-Meter), Lautsprechern und Systemen sowie zur Ermittlung der sogenannten Thiele-Small-Parameter (TSP) von Lautsprecherchassis. Als Anregungssignal stehen ein Rauschsignal (Pink-PN) und ein gestufter Sinus (Stepped Sine) zur Verfügung.

Ω LIMP – Impedanzmessung, TSP, RLC-Meter, Qualitätssicherung

Das vorliegende Handbuch soll Anwendern die Nutzung von LIMP aus der ARTA-Programmfamilie nahebringen. Das LIMP-Handbuch ist weder eine Übersetzung noch ein Ersatz für das englischsprachige Originalhandbuch. Es wird daher empfohlen, das Originalhandbuch parallel zu Rate zu ziehen.

Eine zusätzliche Informationsquelle stellt die ARTA-Homepage dar. Dort werden für den Anwender aktuelle Informationen und Application-Notes bereitgestellt.

Es ist vorgesehen, das Handbuch im Laufe der Zeit ständig zu ergänzen und zu aktualisieren. Dennoch bitten wir um Verständnis, wenn nicht jederzeit jede Maske dem aktuellen ARTA-Release entspricht. Verbesserungs- und Korrekturvorschläge sowie Anregungen zu Programmerweiterungen sind natürlich jederzeit willkommen.

1. LIMP, Einleitung

1.1 Voraussetzungen für die Nutzung und Installation

Die Nutzung der Programme der ARTA-Familie setzt voraus, dass die folgenden Bedingungen erfüllt sein müssen:

Betriebssystem: Windows 98 /ME / 2000 / XP / VISTA / 7 / 8 / 10 / 11 **Prozessor**: Pentium, 400 MHz oder höher, Speicher 128k **Soundkarte**: voll duplexfähig, 1 x Line Out, 2 x Line In

Die **Installation der Programme** ist sehr einfach. Kopieren Sie die Dateien in ein Verzeichnis und entpacken Sie sie anschließend. Das ist alles! Alle erforderlichen Einträge in die Registry werden nach dem ersten Programmstart automatisch gesichert.

1.2 Erforderliches und nützliches Zubehör

Einleitend eine kleine Stückliste mit erforderlichem und nützlichem Zubehör, jeweils versehen mit ersten Hinweisen sowie Querverweisen auf vertiefende Stellen im Kompendium.

Soundkarten

Soundkarten können in drei Gruppen klassifiziert werden:

- 1. Standard-Soundkarten, die sich auf dem Motherboard des Computers befinden (Onboard)
- 2. Zusatz-Soundkarten für den PCI- oder ISA-Bus (Steckkarten)
- 3. Soundkarten, die über eine USB- oder Firewire-Schnittstelle mit dem Computer verbunden sind.

Prinzipiell sind alle drei Typen für den Einsatz von LIMP geeignet, sofern sie einen Ausgangskanal (Line Out) und zwei Eingangskanäle (Line In) besitzen. Bei den Onboard-Soundkarten in Laptops ist das in der Regel nicht gegeben, der Eingangskanal ist oft nur einkanalig (Mono) als Mikrofoneingang (Mic In) ausgeführt.

Leistungsverstärker

Unter der Voraussetzung, dass die Soundkarte einen Kopfhörerausgang (Phone Out) hat, ist für die Impedanzmessung kein Leistungsverstärker erforderlich.

Ansonsten ist jeder Leistungsverstärker mit linearem Frequenzgang und einer Leistung > 5 bis 10 Watt geeignet. Der Ausgangswiderstand R_A sollte < 0,05 Ohm sein. Achtung, verwenden Sie keine Verstärker mit virtueller Masse (Brückenverstärker) für Impedanzmessungen, das könnte Ihrer Soundkarte schlecht bekommen. Wenn Sie nicht sicher sind, welcher Bauart Ihr Verstärker ist, so erkundigen Sie sich besser vor dem ersten Einsatz beim Hersteller. Eine preiswerte Empfehlung, die oben genannte Bedingungen erfüllt - und zusätzlich einem mobilen Einsatz durch geringe Abmessungen entgegen kommt - ist der t.Amp PM40C von Thomann (siehe auch Kompendium, Kapitel 5.4).

ARTA-MessBox

Die ARTA-MessBox ist für Impedanzmessungen nicht erforderlich, erleichtert jedoch das Messleben ungemein. Beim Wechsel zwischen akustischen und elektrischen Messungen wird dann das lästige Umstöpseln von Kabeln durch das einfache Umlegen eines Kippschalters ersetzt (siehe auch Application Note Nr. 1).

Multimeter (DMM)

Ein Multimeter ist für das Messen mit LIMP nicht erforderlich, jedoch für die Kalibrierung der ARTA-Messkette unabdingbar und darüber hinaus natürlich ein nützliches Werkzeug für den Messalltag. Sofern Sie noch kein Multimeter besitzen, sollten Sie sich idealerweise für ein sogenanntes True RMS Multimeter entscheiden. Das Angebot ist groß und auch unter 100 € gibt es bereits brauchbare Geräte.

Kabel

Zur Verbindung aller genannten Komponenten sind diverse Kabel erforderlich. Spätestens wenn eines fehlt, weiß man deren Wert zu schätzen. Achten Sie bei allen Verbindungen auf Qualität! Wackelkontakte, schlechte Schirmung etc. können einem das Messleben vergällen (s. auch Kompendium, Kap. 6.0.1). Bitte achten Sie darauf, dass alle Verbindungen nur so lang wie nötig sind!

1.3 Pinbelegung von NF-Kabeln und NF-Steckern

KLINKE STEREO	XLR
Gehäuse: Masse (GROUND/ SHIELD)	Pin 1: Masse (GROUND/ SHIELD)
Spitze: Plus (LIFE)	Pin 2: Plus (LIFE)
Ring: Minus (LIFE)	Pin 3: Minus (LIFE)

Bild: 1.3.1: Steckerbelegung von Verbindungskabeln

2. LIMP, Messprinzip und Messaufbau

2.1 Messprinzip und praktische Umsetzung

Das Prinzip der Impedanzmessung mit LIMP ist im Bild 2.1.1 dargestellt. Durch Messung der

Bild 2.1.1: Prinzip der Impedanzmessung

Spannung U1 (Line IN, rechter Kanal) über Referenzwiderstand R_{REF} und Lautsprecher sowie U2 (Line IN, linker Kanal) über dem Lautsprecher ergibt sich die Impedanz $Z = R_{REF} \times U2(f) \div (U1(f) - U2(f))$.

Im LIMP-Originalhandbuch wird auf zwei Messaufbauten Bezug genommen:

- Impedanzmessung am Kopfhörerausgang der Soundkarte (Bild 2.1.2)
- Impedanzmessung mit Leistungsverstärker (Bild 2.1.5)

Im Folgenden werden diese beiden Varianten der Impedanzmessung beschrieben.

2.1.1 Impedanzmessung am Kopfhörerausgang der Soundkarte

Die einfachste Möglichkeit, eine Impedanzmessung ohne viel zusätzliches Equipment durchzuführen, ist die Nutzung des Kopfhörerausgangs der Soundkarte. Es wird lediglich ein Referenzwiderstand R_{Ref} sowie ein wenig Kabel benötigt.

Der Messaufbau ist Bild 2.1.2 zu entnehmen. Als Referenzwiderstand R_{Ref} wird im LIMP Originalhandbuch ein Wert von 100 Ohm empfohlen. Je nach Soundkarte sollte der Widerstand Werte zwischen 47 Ohm und 100 Ohm einnehmen.

Bild 2.1.2: Impedanzmessung am Kopfhörer-Ausgang der Soundkarte

Der hohe Wert des Referenzwiderstandes ist der Tatsache geschuldet, dass Kopfhörerausgänge von Soundkarten in der Regel nicht für den Betrieb von Lautsprechern ausgelegt sind. Bild 2.1.3 zeigt den Impedanzverlauf eines gängigen Kopfhörers und eines Lautsprechers im Vergleich. Frei nach

Magnitude(ohms) Impedance 50.0 45.0 40.0 35.0 30.0 25.0 Avg:0 20.0 15.0 10.0 L 5.0 M P 0.0 20 200 500 2k 20k 50 100 1k 5k 10k Cursor: 10.00 Hz, 34.33 Ohm Frequency(Hz) Lautsprecher (rot), Kopfhörer (schwarz)

dem Motto "wenig Ohm, viel Strom" wird deutlich, dass ein Kopfhörerausgang mit maximal 100mW Ausgangsleistung schnell überfordert sein kann.

Bild 2.1.3: Impedanzverlauf Kopfhörer (schwarz) vs. Lautsprecher (rot)

Bild 2.1.4 zeigt die Spezifikation des Kopfhörerausgangs einer gängigen Soundkarte. Die ESI UGM96 liefert eine max. Ausgangsspannung von +4 dBV = $1,0 * 10^{(4/20)} = 1,584$ V.

Line- & Kopfhörer-Ausgang

Type: Stereo 6.3mm Klinkenbuchse
Max. Ausgangspegel: +4dBV
THD+N: 0.003% A-gewichtet
Ausgangsleistung: 100mW Max @ 32 ohm
Impedanz: 32 ~ 600 ohm

Bild 2.1.5: Praktische Umsetzung von Bild 2.1.2

Bild 2.1.5 zeigt die praktische Umsetzung von Bild 2.1.2. Eine derartige Ausführung ist nicht zwingend erforderlich, hilft jedoch bei der Vermeidung von Fehlern, z.B. der Beschädigung der Soundkarte.

2.1.2 Impedanzmessung mit Leistungsverstärker

Um die begrenzte Stromlieferfähigkeit eines Kopfhörerausgangs zu umgehen, kann er durch einen Leistungsverstärker ersetzt werden. Für die Impedanzmessung ist das nicht unbedingt erforderlich, für akustische Messungen aufgrund des höheren Leistungsbedarfs jedoch unabdingbar.

In dieser Anordnung (Bild 2.1.6) darf der Referenzwiderstand niederohmiger sein, die Empfehlung aus dem Originalhandbuch ist $R_{Ref} = 27$ Ohm.

Bei Verwendung eines Leistungsverstärkers muss beachten werden, dass die Spannung am Ausgang des Leistungsverstärkers erheblich höher sein kann als am Kopfhörerausgang und somit die Eingänge der Soundkarte übersteuert oder gar beschädigt werden können. Aus diesem Grunde ist es ratsam, die Soundkarten-Eingänge durch einen Spannungsteiler (Voltage Probe) abzusichern. Dazu folgendes Beispiel:

Hi-Z Instrumenteneingang

Type: unsymmetrisch 6.3mm Klinke
Max. Eingangspegel: +4.5dBV max
THD+N: 0.003% A-gewichtet
Impedanz: 500 kOhm

Max. Eingangsspannung Soundkarte $U_{IN MAX} = +4,5 \text{ dBV} = 1,0 * 10^{(4,5/20)} = 1,679 \text{ V RMS}$ Eingangsimpedanz der Soundkarte $Z_{IN} = 500 \text{ kOhm}$ Leistung des Verstärkers P = 20 Watt

Unter Anwendung des ohmschen Gesetzes berechnet sich die maximale Ausgangsspannung an einer Lastimpedanz von Z = 8 Ohm wie folgt:

 $\begin{array}{l} U = {\rm SQRT} \ (P * Z) \\ U = {\rm SQRT} \ (20*8) = 12,65 \ V \\ G_{\rm IN} = U_{\rm IN \ MAX} \ / \ U_{\rm OUT \ AMP \ MAX} = 1,679 \ / \ 12,65 = 0,1327 \ = -17,54 \ dB \\ {\rm Es \ ist \ also \ ein \ Spannungsteiler \ mit \ ca. \ 18 \ dB \ Abschwächung \ erforderlich. \end{array}$

Bei einer Eingangsimpedanz der Soundkarte von $Z_{IN} = 500$ kOhm und einem gewählten Wert für R2=10 kOhm berechnet sich R1 mit [1] und [3] wie folgt:

Rx = (500000 * 10000) / (500000 + 10000) = 9803,92 Ohm R1 = (Rx/G) - Rx = (9803,92 / 0,1327) - 9803,92 = 64076,42 Ohm → 68 kOhm G_{IN} = 9803,92 / (68000+9802,92) = 0,126 = -17,99 dB

Zur Bemessung des Spannungsteilers siehe auch Kapitel 6.

Die oben eingezeichneten Zener-Dioden (grau) sind nicht unbedingt erforderlich, bieten jedoch einen zusätzlichen Schutz für den Line IN Eingang der Soundkarte. Entscheiden Sie also in Abhängigkeit von Ihrer eigenen Risikobereitschaft über den Einsatz der Zener-Dioden (siehe hierzu auch [I]).

2.2 LIMP, Bedienung

Wie bei allen Programmen der ARTA-Familie sind auch bei LIMP die wesentlichen Befehle und Operationen in der oberen Menüleiste in der Eröffnungsmaske (Bild 2.2.1) enthalten.

Bild 2.2.1: Eröffnungsmaske von LIMP

Die Symbolleiste in der Eröffnungsmaske von LIMP enthält alle wesentlichen Bedienelemente und ist weitgehend selbsterklärend (Bild 2.2.2). Die Systematik entspricht der des Schwesterprogramms ARTA.

Bild 2.2.2: Symbolleiste in der Eröffnungsmaske von LIMP

Weitere Erläuterungen werden im folgenden Text an den entsprechenden Stellen gegeben.

2.2.1 Grundeinstellung von LIMP

Vor der ersten Messung mit LIMP sind einige Einstellungen zu prüfen bzw. vorzunehmen:

- a. Soundkarte und Ein- und Ausgabekanäle in "Soundcard Setup" wählen
- b. Messparameter im "Measurement Setup" einstellen, R_{Ref} eingeben
- c. System Kalibrieren im Menü "Calibrate Input Channels"
- d. Pegel der Soundkarte im "Generator and Input Monitor Setup" einstellen

Ad a.) Im Soundcard Setup (Bild 2.2.3) ist zu prüfen, ob die Soundkarte erkannt wurde. Die Betätigung des Menüpunktes "Soundcard Driver" zeigt Ihnen vorhandene Karten an. Wann immer für Ihre Soundkarte verfügbar, nutzen Sie den ASIO Treiber. Wählen Sie den Treiber sowie den Eingangs- und den Ausgangskanal für Ihre Soundkarte.

Soundcard Setup		X
Soundcard driver	ASIO4ALL v2	Control Panel
Input channels	1/2 •	Wave Format
Output channels	1/2 •	16-bit 🔻
	Cancel	ОК

Bild 2.2.3: Soundcard Setup von LIMP

Mit dem Control Panel können - je nach gewähltem Treiber - entweder der Windows Mixer oder das ASIO Control Panel geöffnet werden. Für LIMP sind hier keine weiteren Einstellungen vorzunehmen.

Ad b.) Im Measurement Setup ist in der Regel nur der Wert des Referenzwiderstandes einzugeben, ansonsten sind die Default-Werte gut voreingestellt. Das Measurement Setup von LIMP hat drei Bereiche:

- Measurement Config (Links)
- Stepped Sine Mode (Mitte)
- FFT Mode Pink Noise or Multitone Excitation (Rechts)

LIMP

Measurement config		Stepped sine mode	FFT mode (PN pink or multitone)
Reference channel	Right 💌	Frequency increment 1/24 octave	▼ FFT size 32768 ▼
Reference Resistor	13.62	Min. integration time (ms) 200	Averaging Exp
Frequency range (Hz)		Transient time (ms) 100	Max averages 100
High cut-off	20000	Intra burst pause (ms) 100	Asynchronous averaging
Low cut-off 20		Mute switch-off transients 🔽	
Sampling rate	44100 🔻		

Bild 2.2.4: Measurement Setup von LIMP

•

Im Bereich Measurement Config werden die allgemeinen Messparameter festgelegt:

- Referenzkanal: Default ist der rechte Eingangskanal
- Referenzwiderstand: Siehe Abschnitt. 2.1.1 bzw. 2.1.2. Achtung, den Referenzwiderstand bitte genau ausmessen.
- Obere Frequenzgrenze: Stopwert, siehe unten
- Untere Frequenzgrenze: Startwert, siehe unten

Die Frequenzgrenzen sind auch über die obere Menüleiste zu steuern.

Fstart(Hz) 10 ÷	Fstop(Hz)	20000 ÷	
-----------------	-----------	---------	--

Im Bereich Stepped Sine Mode werden die Parameter für die Anregung mit gestuftem Sinus definiert.

Alle Parameter dieses Bereiches sind im ARTA Kompendium, Abschnitt 9.1 erläutert. Die eingestellten Default-Werte (siehe links) müssen nicht verändert werden.

Mute switch-off transients: blendet die "Knackser" am Ende eines jeden Sinuspakets aus.

Im Bereich FFT Mode werden die Parameter für die Anregung mit rosa Rauschen oder Multitone definiert.

- FFT Size: Anzahl der Werte für die FFT (Auflösung)
- Averaging: Art der Mittelung (keine, linear, exponentiell)
- Max Averages: maximale Zahl der Mittelungen
- Asynchronous Averaging: asynchrone Mittelung an/aus

Ad c.) Im Menü "Calibrate Input Channels" wird die Kalibrierung der Soundkarte durchgeführt. Der Vorgang selbst ist äußerst simpel. Nach Prüfen der Einstellwerte und des Pegels im Abschnitt

Gen	erate				Calibrate			Sta	itus	
Seq	. length	3	2768		Connect le channel to	ft and rig	ht input enerator	N	ot calibra	ated!
Sam	pling rate	4	8000		output !					
					Numbe	r of avera	ages			
Out	put volume	e (dB) 🕞	12dB	•	1	-				
		Generate				Calibrate			Un	calibrate
Input	t Level Mor	nitor								Const
L	1	-70	I	-50	I	-30	1	-10	dB	Cancel
R	-80	I	-60	I	-40	I	-20	I	dB	ОК

Bild 2.2.5: Measurement Setup von LIMP

Anmerkung: Wenn Sie mit der ARTA-Messbox arbeiten, sollten Sie den Schalter Impedance Calibration/Measurement immer auf Measurement stehen lassen. Für die Kalibrierung entkoppeln Sie kurz den Lautsprecher von den Speaker-Ausgangsklemmen (weitere Erläuterungen siehe ARTA Application Note Nr. 1).

"Generate" wird durch Betätigung des Buttons "Calibrate" die Kalibrierung der beiden Eingangskanäle vorgenommen. Nach Abschluss der Kalibrierung wechselt der Status von "Not Calibrated!" auf "Calibrated for".

Achtung, die Kalibrierung gilt jeweils nur für die gewählte Einstellung. Wenn Sie also die Sampling Rate oder die Länge der FFT-Sequenz wechseln, müssen Sie neu kalibrieren.

Die ausgewiesene Kanaldifferenz – in diesem Beispiel 0,11 dB – wird rechnerisch ausgeglichen. Wenn die Differenz > 2 dB ist, gibt es eine Fehlermeldung (Bild 2.2.6).

Status			
Calibrated for:			
Seq.length: 32768			
Fs: 44100 Hz			
Channel diff: 0.11dB			
Uncalibrate			

Bild 2.2.6: Fehlermeldung beim Kalibrieren von LIMP

Die Fehlermeldung beinhaltet Hinweise auf mögliche Ursachen für die Kanaldifferenzen:

- Richtiger Referenzkanal (siehe Bild 2.1.2, Bild 2.1.6, Bild 2.2.4)?
- Gleiche Verstärkung für beide Eingangskanäle (siehe Kompendium, Abschnitt 2)?
- Beide Spannungsteiler gleich (sofern vorhanden)?
- Kabel und Verbindungen in Ordnung?

Ad d.) Bevor es ans Messen geht, ist zu überprüfen, ob der eingestellte Ausgangspegel nicht zur Übersteuerung der Eingangskanäle führt. Dazu ist das "Generator and Input Monitor Setup" gut geeignet.

Generator and Input Monitor Set	up	2
Generator Signal type Sine	•	
Stepped sine level -30dB	Sine freq. (Hz)	ю
Multisine level -11dB	Pink cut-off (Hz)	100
Input voltage monitor	db 🥅	dB dB
RMS of Left Ch.	RMS of Right Ch.	10
16.30mV	16.30mV	-20 —
Input Calibration		-40 -
Sensitivity (mVpeak) - Left	Sensitivity (mVpeak) - Right	
1000	1000	-60 —
Calibrate Left	Calibrate Right	70
Start/Stop	Cancel OK	-80 — L R

Generator and Input Monitor Setup

- Anregungsart: PN, Multisine oder Stepped Sine
- Ausgangspegel Sine: 0 bis -30 dB
- Ausgangspegel PN/MS 0 bis -20 dB
- Frequenz bei Sinusanregung
- Eckfrequenz bei Anregung mit PN

Input Level Monitor

Durch Aktivieren von "Start/Stop" wird das oben eingestellte Signal gestartet und im Peak Level Meter angezeigt. Sollte die Anzeige rot oder gelb sein, ist der Pegel zu reduzieren.

Dabei ist zu beachten, dass der Energiegehalt der Anregungssignale PN/Multisine und Sinus sehr unterschiedlich ist, d.h. bei Wechsel der Anregungsart sollte der Pegel neu geprüft werden

(siehe auch Abschnitt 3.1.1). Im Menü Generator Setup sind alle erforderlichen Einstellungen möglich.

Ab der Version 1.9.2 ist in LIMP eine Pegelkalibrierung integriert. Sie ist für die Impedanzmessung nicht erforderlich, gibt dem Nutzer jedoch nach der Aktivierung eine Information über die während der Messung am Lautsprecher anliegende Messspannung an (siehe hierzu auch Abschnitt 3.1.1). Die Kalibrierung ist äußerst einfach und läuft wie folgt:

- 1) Signal type = Sine; Sine Frequenz = 400 Hz einstellen
- 2) Stepped Sine Level = 0 dB einstellen
- 3) Anstelle des Lautsprechers ein Multimeter anschließen
- 4) Starten des Signalgenerators mit "Start/Stop"
- 5) "Calibrate Left" aktivieren. Es erscheint folgendes Menü:

Voltage Calibration for L	LEFT Input Channel			
The circuit for imped	ance measurement must be connected to the soundcard.			
Enter voltage measured with voltmeter connected instead of impedance.				
	0 (mV rms)			
	Cancel OK			

- 6) Eingabe der mit dem Multimeter gemessenen Spannung in mV_{RMS} und mit OK bestätigen
- 7) Wiederholung des Vorganges für den rechten Kanal

Prüfen Sie die Kalibrierung, indem Sie den Pegel (Stepped Sine Level) variieren und die von LIMP angezeigte Spannung mit dem Multimeterwert vergleichen.

2.2.2 Kompensation der Messleitungen

Beim Messen gilt der Grundsatz "Alle Verbindungen so kurz wie möglich". Wer das beherzigt, kann diesen Abschnitt fast überlesen.

Auch die kürzeste Leitung aus Kupfer hat einen Widerstand, nämlich 0,017241 $\Omega \cdot mm^2/m$. Bild 2.2.7 zeigt den Impedanzgang unterschiedlicher Messleitungen aus Kupfer. Von oben nach unten sind 5,5 m als 2,5 mm², 4 m als 4 mm² und 0,9 m als 4 mm² (rot via ARTA MessBox an R_{Ref} = 20 Ohm, blau via Kopfhörerausgang an R_{Ref} = 68 Ohm) abgebildet. Je nach Länge und Querschnitt sind zwischen 0,03 Ω bis 0,23 Ω zu verzeichnen. Wer es nachrechnet, wird feststellen, dass die gemessenen Werte nicht gänzlich durch den reinen Leitungswiderstand zu erklären sind. Übergangswiderstände an Schaltern, Klemmen sowie Bananensteckern leisten ebenfalls einen Beitrag, wie am Beispiel der ARTA-Messbox im Vergleich zur Kopfhörerversion zu sehen ist.

Bild 2.2.7: Impedanz von diversen Messleitungen

Mittels des Menüs "Cable Impedance Compensation" lassen sich die Kabelwiderstände kompensieren. Dazu wird die kurzgeschlossene Messleitung gemessen. Es sollte ein ähnliches Ergebnis wie in Bild 2.2.7 auf dem Monitor erscheinen. Setzen Sie den Cursor in etwa bei ca. 45° Phasenwinkel und betätigen den Button RLC in der Hauptmenüleiste. Dann erscheint das rechts gezeigte Menü "Impedance at Cursor" und weist den Widerstand

Impedance at cursor	×
Inductive impedance at frequency 10044.38Hz	
R = 29.972 mohm	
L = 974.699 nH	

und die Induktivität an der Cursorposition aus. Diese Werte werden in das Menü "Cable Impedance Compensation" übertragen (Bild 2.2.8). Achten Sie dabei bitte auf die Einheiten! Sofern die Checkbox "Automatically subtract cable impedance from measured Impedance" aktiviert ist, werden die Korrekturen automatisch in jede Messung eingefügt.

Cable Impedance Compensation	. <u> </u>
Automatically substract cabl	e impedance from measured impedance 📃
Cable resistance (ohm)	0.0299
Cable inductance (nH)	979
	Cancel OK

Bild 2.2.8: Menü zur Kabelkompensation

Eine zweite Möglichkeit der Kompensation von Messleitungen besteht mittels der Funktion "Subtract Overlay". Hierbei wird eine "Nullmessung" am Messkabel als Overlay gespeichert und nach jeder Messung vom Ergebnis subtrahiert.

3. LIMP, Ermittlung der Thiele-Small-Parameter

LIMP unterstützt die Ermittlung der TSP nach drei unterschiedlichen Methoden:

- im Testgehäuse mit bekanntem Volumen VM (Bild 3.1.a)
- durch Beschweren der Membran mit bekannter Zusatzmasse AM (Bild 3.1b)
- mittels bekannter, gewogener Membranmasse FM (Bild 3.1c)

Prinzipiell sind alle Methoden gleichwertig, jedoch sollte die Volumenmethode immer dann angewendet werden, wenn die Resonanzfrequenz des Lautsprechers sehr niedrig ist. Bei Anwendung der Massemethode könnte die Resonanzfrequenz zu so tiefen Frequenzen verschoben werden, dass der lineare Messbereich der Soundkarte verlassen wird.

3.1 Vorbereitung der TSP-Messung

Bevor es ans Messen geht, lassen Sie uns noch einige Überlegungen zu den Rahmenbedingungen anstellen, indem wir dem Master Class Seminar "Loudspeaker Parameters" von Neville Thiele und Richard Small aus dem Jahre 2008 [7] folgen. Dort wurden - neben anderen Themen - die Bedingungen zur Ermittlung von TSP-Parametern (Signalstärke, Messlage (horizontal, vertikal), Einbauoder Einspannbedingungen) und Break-In diskutiert.

3.1.1 Stärke des Anregungssignals

Bedenken Sie, dass die TSP als "Kleinsignalparameter" deklariert sind! Richard Small empfiehlt, den Pegel des Messsignals soweit zu beschränken, dass gerade noch ein sauberes Messsignal empfangen wird. Der Standard AES2-2012 [8] empfiehlt 0,1 Volt als typische Messspannung.

Die IEC 60268, Teil 22, aus dem Jahr 2020 definiert für "Kleinsignal" im Abschnitt 8.1 folgende Bedingungen [15]:

- Anregungsspannung < $0,1 \cdot U_{max}$
- Verzerrungsanteil < 40 dB
- Temperaturerhöhung $\Delta T < 5^{\circ}$

Im Annex 1 werden die Bedingungen für ein Kleinsignal tiefergehend beleuchtet.

Herstellerseitig sind die Informationen bezüglich der Randbedingungen bei der TSP-Messung eher spärlich. In aller Regel findet man lediglich einen Verweis auf die IEC 60268-5 und kurze Informationen zur Vorbehandlung (siehe Abschnitt 3.1.2). Für die Reproduzierbarkeit der Messergebnisse im Rahmen der üblichen Toleranzen [14] ist es unabdingbar die Randbedingungen (z.B. Anregungspegel, Signalart) zu kennen, unter denen die Messung stattgefunden hat.

Ab der Version 1.9.2 weist LIMP für Stepped Sine zu jeder Messfrequenz den aktuellen THD-Wert unter der Grafik aus. Der höchste, während der Messung ermittelte THD-Wert sowie die zugehöri-

ge Frequenz werden im File-Info gespeichert. Damit erhält der Nutzer einen Hinweis ob er im linearen Bereich gemessen hat.

Im nachfolgenden Bild 3.2a wurde zusätzlich zur Impedanzmessung mit LIMP eine Klirrmessung mit STEPS durchgeführt. Die Angaben im LIMP-File-Info sind in guter Übereinstimmung mit der STEPS-Messung (THD = -43,6 dB = 0,66%). Das Klirrmaximum liegt im Bereich der maximalen Membranauslenkung.

Bild 3.2a: THD_{MAX} im LIMP-File-Info und STEPS-Messung (fs = 51, 6 Hz)

Bild 3.2b zeigt THD_{MAX} in Abhängigkeit vom Anregungspegel. Das Klirrminimum für die beiden Hifi-Chassis liegt im Bereich von 20 bis 100 mV, beim PA-Chassis bei ca. 200 mV. Das ist in guter Übereinstimmung mit der Empfehlung der AES 2 - 2012 [8], die 0,1 V als Anregungsspannung für die TSP-Messung empfiehlt.

Bild 3.2b: THD als Funktion der Messspannung an 8,2 Ohm.

In diesem Zusammenhang muss auch beachtet werden, dass der Energiegehalt der in LIMP zur Verfügung stehenden Messsignale (PN, Multisine, Stepped Sine) unterschiedlich ist. Bild 3.2c zeigt die Impedanzverläufe für die Anregungssignale bei identischer Verstärkung. Die blaue Kurve gilt für die Anregung mit Sinus, die rote Kurve für PN und die schwarze Kurve für das Multitonesignal. Es ist deutlich zu sehen, dass das energiereichere Sinussignal erwartungsgemäß zu einer tieferen Resonanzfrequenz führt. PN und Multitone führen zu fast identischen Ergebnissen.

Bild 3.2c: Impedanz bei unterschiedlicher Anregung (blau = SIN, rot = PN, schwarz = Multitone)

Werden die Anregungspegel für die unterschiedlichen Signale auf eine weitgehend identische Resonanzfrequenz abgestimmt, so ergeben sich vergleichbare TSP (s. nachfolgende Tabelle).

Parameter	SIN -30dB	PN -17dB	MT -15dB	Dim
Fs	74,62	75,30	75,51	Hz
Re	5,70	5,70	5,7	ohm[dc]
Qt	0,49	0,46	0,46	-
Qes	0,53	0,50	0,51	-
Qms	5,36	5,00	5,18	-
Mms	8,61	8,61	8,61	grams
Rms	0,7537	0,8152	0,7885	kg/s
Cms	0,5284	0,5188	0,5159	mm/N
Vas	4,75	4,66	4,64	liters
Sd	80,01	80,01	80,01	cm^2
BI	6,56	6,80	6,77	Tm
ETA	0,36	0,38	0,38	%
Lp(2.83V/1m)	89.08	89.39	89.35	dB

Daraus kann abgeleitet werden, dass mit allen Signalen eine vergleichbare Resonanzfrequenz erzielt werden kann, wenn der Pegel des Sinussignals ca. 13 - 15 dB unter dem Pegel von PN oder Multitone liegt.

3.1.2 Vorkonditionierung - Break In

Die AES2-2012 [8] sagt hierzu "Es ist wahrscheinlich, dass vor der Messung der TSP der Lautsprecher mehrere Minuten betrieben werden muss, um ein Driften der Resonanzfrequenz zu stoppen".

Die veröffentlichten IEC 60268, Teil 21 [13] und Teil 22 [15] werden diesbezüglich konkreter, sie führen im Abschnitt 14 aus: "Wenn an das neue DUT zum ersten Mal ein Signal angelegt wird, das eine starke Auslenkung erzeugt, kommt es ggfs. zu zeitweiligen oder dauerhaften Veränderungen. Es muss eine ausreichende Vorbehandlung erfolgen, die der vorgesehenen Verwendung des DUT im Feld entspricht (z. B. Bandbreite der Anwendung, Gehäusetyp).

ANMERKUNG: Beispielsweise kann es zu erheblichen Veränderungen der mechanischen Eigenschaften der Treiberaufhängung kommen. Auch die Auswirkung einer Erwärmung und Abkühlung der Schwingspule beeinträchtigen das DUT. Das DUT muss vor der Durchführung der Messungen vorbehandelt werden, indem für mindestens eine Stunde (bei TT werden 3 Stunden empfohlen) ein Breitbandsignal bei der Hälfte des höchsten Eingangswertes U_{max} angelegt wird. Bevor anschließend mit der Messung begonnen wird, muss der Vorbehandlung eine Erholungsphase mindestens einer Stunde folgen, in der sicherzustellen ist, dass sich die Temperatur der Innenteile wieder an die Umgebungsbedingungen anpasst".

Eine Analyse von Herstellerspezifikationen bzgl. der Messbedingungen zeigt, dass vor der TSP-Messung fast immer eine "Vorkonditionierung" durchgeführt wird, jedoch unterscheiden sich die Bedingungen sehr. SB Acoustics [7] spielt ihre Lautsprecherchassis vor der TSP-Messung ca. 10 Minuten mit einem Sinussignal bei 0,8 fs ein. Die Spannung wird dabei so gewählt, dass der Lautsprecher im Bereich der maximalen Auslenkung betrieben wird. Andere Hersteller wählen eine Stunde bei 20 Hz, nutzen Rauschsignale, Anregungspegel von 4 Watt bis zur Belastungsgrenze; insgesamt ergibt sich eine bunte Mischung. Wenige Quellen, so z.B. Vance Dickason [3] sagen, dass das Einspielen von Lautsprecherchassis nicht erforderlich ist und lediglich für die (Früh)Erkennung von verdeckten Defekten von Nutzen ist.

3.1.3 Einspannbedingungen und Messlage

Unter welchen Bedingungen sollten die TSP gemessen werden? Fest eingespannt, am Faden hängend, lose in der Hand? Richard Small empfiehlt eine feste Einspannung in Einbaulage (siehe Bild 3.5, linkes Teilbild). Er zeigt in seinem Vortrag beispielhaft, was passiert, wenn dem Masse-Feder-System Lautsprecher unbewusst weitere Elemente beigefügt werden.

Bild 3.3 zeigt ein nachgestelltes Messbeispiel, in dem Chassis auf unterschiedlichen Unterlagen (hart = blau; Schaumstoff = rot) gemessen wurden. Das Chassis im linken Teilbild hat eine Membranmasse von 11g und das im rechten Teilbild von 43g. Es ist sehr schön zu sehen, dass durch die "Zuschaltung" der weichen, federnden Unterlage eine zusätzliche Resonanz erzeugt wird.

Bild 3.3: Einfluss der Messunterlage für zwei Lautsprecher (rot = Schaumstoff, blau = MDF)

Wenn schon in vertikaler Lage gemessen wird, dann sollte zumindest eine feste Unterlage gewählt werden. Ferner sollte bei dieser Lage natürlich darauf geachtet werden, dass eine eventuell vorhandene Polkernbohrung frei atmen kann.

Bild 3.4: Messlage bei der Messung der TSP

Bezüglich der Auswirkung der Messlage (horizontal, vertikal) auf die TSP des Chassis gibt es in Foren etliche Diskussionen. Fakt ist, dass sich in vertikaler Lage - bedingt durch die Schwerkraft eine Verschiebung der Nulllage der Schwingspule ergibt. Ob das von praktischer Bedeutung ist, hängt von den Parametern des Lautsprechers ab. Die wirkende Kraft beträgt $F = m \cdot g$ und kann mit der Membranmasse und $g = 9,81m/s^2$ ermittelt werden. Durch Multiplikation von F mit C_{MS} ergibt sich die Nullpunktverschiebung.

Richard Small und andere Autoren empfehlen, die Chassis in Einbaulage zu messen, also mit horizontaler Lautsprecherachse [7], [5].

Bild 3.5: Einspannvorrichtungen für TSP Messung

Insofern sollten zumindest diejenigen, die sich dauerhaft dem Hobby Lautsprecherbau verschreiben wollen, den Bau einer einfachen Haltevorrichtung überdenken, in der sowohl die "normale Einbaulage" als auch eine feste, nicht nachgiebige Befestigung realisierbar ist. Da auch hier die Gesetze der Physik gelten (actio = reactio), ist zur Erfüllung der letztgenannten Forderung ein wenig Masse erforderlich.

Im ARTA Hardware & Tools Manual, aber auch in den einschlägigen Foren, findet man

hierzu diverse mehr oder minder einfach nachzubauende Beispiele. Relativ einfach und preiswert in der Umsetzung ist die Lösung in Bild 3.5, rechts.

3.1.4 Ermittlung S_D

Für die Berechnung der TSP muss die effektive Membranfläche S_D oder der effektive Membrandurchmesser D_D bekannt sein. Da neben der Membran auch ein Teil der Sicke mitschwingt, ist dieser Anteil mit zu berücksichtigen. Üblich ist die Einbeziehung von einem Drittel bis zur Hälfte der Sicke. Die Güte

der TSP-Parameter ist stark vom Wert der Membranfläche S_D abhängig, da der Wert quadratisch eingeht. Normalerweise wird S_D aus einer Messung des Membrandurchmessers ermittelt, die 1/3 bis 1/2 der Sicke erfasst.

Im LIMP-Originalhandbuch ist ein Verfahren zur Ermittlung der Fläche S_D aus Messdaten beschrieben. Das Verfahren basiert auf Anwendung der zwei Messmethoden "AM – Added Mass" und "VM – Volume Method" und nutzt die Tatsache, dass bei der VM- Methode V_{AS} unabhängig von S_D ist und bei der AM-Methode M_{MS} unabhängig von S_D ist. Dann kann der Wert der Fläche S = S_D in cm² berechnet werden

$$S(cm^{2}) = 10\sqrt{\frac{M_{MS}V_{AS}\omega_{S}^{2}}{\rho_{o}c^{2}}} = 0.1677f_{S}\sqrt{M_{MS}V_{AS}}$$

wobei M_{MS} in Gramm nach der AM-Methode und V_{AS} in Liter nach der VM-Methode ermittelt wird. Die Frequenz f_S ist die Resonanzfrequenz des Treibers, die ohne Gehäuse gemessen wird.

3.1.5 Messung von RE

Der Ermittlung des Gleichstromwiderstandes R_E der Schwingspule kommt hinsichtlich der Bestimmung der TSP einige Bedeutung zu. Hierfür benötigen Sie ein gutes Gleichstrom Vierleiter-Milliohmmeter. Normale Multimeter sind in der Regel hierfür zu ungenau. Wenn Sie also nicht sicher sind, ob Ihr Multimeter genau genug ist, können Sie sich mit dem folgenden Trick behelfen. Selbst mit einem sehr einfachen Multimeter lassen sich mit dieser Methode hinreichend hohe Genauigkeiten erzielen:

- Schalten Sie einen bekannten Widerstand R_v (z.B. 8,2 Ohm ¼ Watt, 1%) und den Lautsprecher in Reihe
- Klemmen Sie eine 1,5 V Batterie an
- Messen Sie mit einem Multimeter die Spannung U_{RV} über dem Widerstand R_V und die Spannung U_{LS} über dem Lautsprecher
- Der Gleichstromwiderstand des Lautsprechers berechnet sich wie folgt $R_{DC} = R_V \cdot U_{LS} / U_{RV}$

Beispiel:

Hinweis: Ab der Version 1.8 bietet LIMP eine Option zur Ermittlung von R_E aus der Impedanzmessung (siehe hierzu Abschnitt 3.2). Diese Angabe ist in der Regel etwa 3% zu hoch, daher wird empfohlen, R_E über das LIMP RLC-Meter bei der tiefsten Frequenz, die Ihre Soundkarte zulässt, zu ermitteln.

3.1.6 Empfehlungen

Immer wieder wird in Foren die Vergleichbarkeit oder gar die Validität von TSP-Messungen oder Herstellerangaben diskutiert. Im Abschnitt 3 wurde gezeigt, dass die Messbedingungen die Messergebnisse stark beeinflussen. In der Application Note AN42 zum Klippel R&D System wurden die unterschiedlichen Einflussgrößen umfassend untersucht [14]. Danach können durch Variation der Messparameter durchaus Streuungen von 15% und mehr auftreten. Es sollte also nicht erwartet werden, dass unterschiedliche Messbedingungen identische Ergebnisse liefern.

Um die Reproduzierbarkeit einer TSP-Messung zu gewährleisten, müssen die Randbedingungen möglichst genau spezifiziert sein. In erster Linie sind dies Messpegel, Signalart, Vorbehandlung, Auswertungsart und Temperatur. LIMP gibt dem Anwender die Möglichkeit all dies zu realisieren. Ab der Version 1.9.2 kann – sofern die Pegelkalibrierung (siehe 2.2.1) genutzt wird - der absolute Messpegel in Vrms im "Generator and Input Monitor Setup" eingestellt werden.

Zwecks Dokumentation der Messbedingungen wird empfohlen für die Filebezeichnung folgende Nomenklatur anzuwenden: **Treibername_Signal_Pegel_Messbedingungen.lim.** Hierzu nachfolgend einige Beispiele:

Treiber	Signal	Pegel	Messbedingung	Filename
ABC-8	SIN = Stepped Sine	150 mV	FA = free air	ABC-8_SIN_150mV_FA
ABC-8	PN = Periodic Noise	300 mV	VM13 = Volumenmethode 13 L	ABC-8_PN_300mV_VM13
ABC-8	MT = Multitone	350 mV	AM8.5 = Added Mass 8.5 g	ABC-8_MT_350mV_AM8.5
ABC-8	SIN = Stepped Sine	150 mV	FM12.2 = Fixed Mass 12.2 g	ABC-8_SIN_150mV_FM12.2

Damit sind die wesentlichen Messbedingungen schon im Filenamen dokumentiert und lassen eine Wiederholung der Messung unter identischen Bedingungen auch nach längerer Zeit zu. Weitere Informationen können im File Info hinterlegt werden bzw. sind bereits enthalten (siehe Bild 3.5).

Name	Änderungsdatum	Loudspeaker parameters:
22W SIN 3.63mV@8.20hm FA.lim 22W SIN 6.45mV@8.20hm FA.lim 22W SIN 20.38mV@8.20hm FA.lim 22W SIN 64.47mV@8.20hm FA.lim 22W SIN 204mV@8.20hm FA.lim 22W SIN 699mV@8.20hm FA.lim 22W SIN 2210mV@8.20hm FA.lim	12.04.2019 19:12 12.04.2019 17:58 12.04.2019 18:04 12.04.2019 18:36 12.04.2019 18:40 12.04.2019 18:45 12.04.2019 18:49	Fs = 40.28 Hz Re = $5.70 \text{ ohm}[dc]$ Le = 57.74 uH L2 = 255.54 uH R2 = 2.72 ohm Qt = 0.50 Qes = 0.54 Qms = 7.99 Mms = 10.80 grams
File Info File: AL 130 SIN 64.47mV@8.20hm.lim NumPoints: 153 From: 5.1Hz to 508.7Hz		Cms = 0.3+13+2 kg/s Cms = 1.445283 mm/N Vas = 13.66 liters Sd = 82.03 cm^2 Bl = 5.386642 Tm ETA = 0.16 % Lp(2.83V/1m) = 85.61 dB
User supplied additional informations: Driver voltage max. THD = -45.4dB at f = 18.7Hz T = 23 °C		Fixed Mass Method: Driver unbaffled in free air Membrane mass = 10.38 g Membrane diameter = 10.22 cm

Bild 3.5: Zusammenstellung von Informationen zu den Messbedingungen

Auch unter vergleichbaren Messbedingungen wird es bei der Messung mehrerer Treiber Abweichungen/Streuungen geben, selbst innerhalb einer Charge (siehe hierzu auch Abschnitt 4).

Wie sich die Streuungen der Thiele Small Parameter auswirken, kann leicht mit jedem Simulationsprogramm geprüft werden. Ansonsten ist der Vergleich des Quotienten fs/Qts ein erster Hinweis, ob sich die beiden Parametersätze im Simulationsergebnis deutlich unterscheiden werden.

3.2 Lautsprechermodelle zur TSP-Ermittlung

Ab der Version 1.8 bietet LIMP für die Ermittlung der TSP – neben der rechts gezeigten klassischen Methode [2, 10, 11] – weitere Funktionalität für die Ermittlung der TSP. Detaillierte Informationen zu den Hintergründen sind [10] zu entnehmen. Im Folgenden sollen die Erweiterungen kurz erläutert werden. Dazu schauen wir uns die Maske "Loudspeaker Parameters" an.

Im Bereich "User Input" müssen die extern zu ermittelnden Basisparameter in Abhängigkeit von der gewählten Methode (Masse oder Volumen) eingegeben werden. Ferner ist die Einbausituation des Lautsprechers festzulegen (siehe dazu auch 3.1.4, 3.1.5).

Loudspeaker Parameters - Closed Box Me	thod	×
Impedance data:	*	User Input
Z1max = 0.00 ohm Fso1 = 5.0 Hz Z1min = 0.00 ohm		Voice coil Resistance (ohm) 5.7
2 11111 - 0.00 01111		Membrane diameter (cm) 10.22
		Closed box volume (lit) 6
		Driver mounted in infinite baffle 🕅
		Nonlinear LSE Optimization
		Estimate TSP by LSE minimization 📃
		Estimate voice coil resistance Re 📃
		Estimate lossy inductor model 📃
		Le + L2 R2 ▼
		Le + L2 R2 + L3 R3
		Calculate
	Ŧ	Copy OK

Bild 3.6: Menü Loudspeaker Parameters (hier Closed Box)

Im Bereich Nonlinear LSE Optimization befinden sich 3 Checkboxen und ein Drop-Down-Feld. Über die Checkboxen wird die Art der Optimierung gewählt:

- Estimate TSP by LSE minimization
- Estimate Voice Coil Resistance Re
- Estimate lossy inductor model

Sofern keine der Checkboxen aktiviert ist, wird die klassische Methode zur Ermittlung der TSP angewendet (siehe LIMP-Handbuch, Abschnitt 5.2.2).

Wird Checkbox "TSP by LSE minimization" aktiviert, so erfolgt die Anpassung an die Impedanzkurve durch nichtlineare Optimierung. Die Güte der Optimierung kann grafisch durch Betätigung der Funktionstaste F3 kontrolliert werden (siehe Bild 3.8a oder 3.8b). Wird die Checkbox "Voice Coil Resistance R_E " aktiviert, ermittelt LIMP aus dem gemessenen Impedanzverlauf den Gleichstromwiderstand R_E der Schwingspule. Dies ist besonders interessant, wenn kein Ohmmeter/Multimeter zur Verfügung steht. Bei Nutzung dieser Option sollte mit Stepped Sine ab 5 Hz gemessen werden. Achtung, der per aktivierter Checkbox ermittelte Wert hat Vorrang vor dem eingegebenen Wert für R_E .

Durch Aktivierung der Checkbox "Lossy Inductor Model" kommt das im Drop-Down-Feld gewählte Modell für die Schwingspuleninduktivität Z_{LE} für die Optimierung zur Anwendung.

c) Models for Z_{LE}

Bild 3.7: Ersatzschaltbild eines Lautsprechers mit verschiedenen Modellen für ZLE

Dafür stehen drei unterschiedliche Modelle zur Verfügung (Bild 3.7c, Models for Z_{LE}). Interessant ist diese Ergänzung für diejenigen, die mit Ersatzschaltbildern in der Simulation operieren, da sich die Güte der Abbildung des Impedanzverlaufs über den gesamten Frequenzbereich deutlich verbessert.

Bild 3.8a: TSP und Güte der Anpassung im Modell L2R, alle Optimierungsparameter inaktiv

Bild 3.8b: TSP und Güte der Anpassung im Modell L3R, alle Optimierungsparameter aktiv

Wie wir sehen, unterscheiden sich die Ergebnisse je nach gewähltem Modell geringfügig. Der Quotient fs/Qt differiert um ca. 3%, die Ergebnisse für Vas weichen um ca. 13% voneinander ab. Was hat das nun für Auswirkungen auf die Abstimmung des Lautsprechers?

Bild 3.8c zeigt eine AJH-Simulation mit den Parametersätzen aus Bild 3.8a (Modell L2R = schwarz) und Bild 3.8b (Modell L3R = rot). Die Interpretation der Bedeutsamkeit der Unterschiede, die sich aus den zwei Parametersätzen ergeben, bleibt dem Leser überlassen.

Bild 3.8c: Simulationsergebnisse für Parametersätze aus Bild 3.8a und Bild 3.8b

3.3 TSP-Ermittlung, Volumenmethode (Closed Box)

Die Prozedur zur Ermittlung der Thiele-Small-Parameter nach der Volumenmethode läuft wie folgt:

1) Kalibrieren (siehe Abschnitt 2.2.1)

2) Testvolumen festlegen

In Abhängigkeit von der Membranfläche (Durchmesser) des zu messenden Lautsprechers ist ein Testgehäuse mit passendem und bekanntem Volumen zu beschaffen. Eine grobe Abschätzung des

erforderlichen Volumens für das Testgehäuse kann mit dem links gezeigten Bild vorgenommen werden. Es muss jedoch nicht extra gefertigt werden, denn jedes vorhandene Gehäuse in dieser Größenordnung ist geeignet, vorausgesetzt es führt zu einer Resonanzverschiebung des Lautsprechers im Bereich zwischen 20% und 50%. Die Resonanzverschiebung wird durch LIMP kontrolliert und angezeigt (s. Bild 3.9a).

Beispiel: Laut Bild soll für ein 8" Chassis (S_D ca. 230 cm²) das Volumen des Testgehäuses in etwa 20-30 Liter betragen. Bei der Eingabe des Testvolumens (Closed Box Volume) in der Maske "Closed Box Method" ist zu berücksichtigen, dass zu dem exakten Volumen der Testbox

das Volumen des Lautsprecherkonus addiert werden muss (s. Bild 3.1a).

- 3) Messung des Lautsprechers "free air"
- 4) Die free-air-Messung mit **Overlay** → **Set** speichern (Kurve verändert Farbe)
- 5) Die Messung des LS im Testgehäuse durchführen (s. Bild 3.1a)

Bild 3.9: Impedanzgang des LS im Gehäuse (blau) und free air (rot)

6) Über das Menü Analyze \rightarrow Loudspeaker parameters – Closed box method können nun die erforderlichen Parameter (R_{DC} , D_D , V_T) im Bereich ,User Input' eingegeben werden (siehe auch Abschnitt 3.1).

Impedance data:		User Input
Z1max = 24.49 ohm Fso1 = 33.7 Hz Z1min = 3.40 ohm		Voice coil Resistance (ohm) 5.5
Overly data:		Membrane diameter (cm) 10.1
Z2max = 124.89 ohm Fso2 = 43.8 Hz Z2min = 6.42 ohm		Closed box volume (lit) 5.4
Frequency shift = 23.0 % (optimal shift is 20% to 40%)		Driver mounted in infinite baffle 📃
		Nonlinear LSE Optimization
		Estimate TSP by LSE minimization 📝
		Estimate voice coil resistance Re 📃
		Estimate lossy inductor model 📝
		Le + L2 R2 •
		Calculate Export Cancel
	-	parameters Copy OK

Bild 3.9a: Menü für die Berechnung der TSP

Falls die Eingabefelder für Eingaben gesperrt sind (graue Hinterlegung), ist noch kein Overlay definiert. Durch Betätigung von ,**Calculate'** errechnet LIMP die TSP (s. Bild 3.9b).

Loudspeaker Parameters - Closed Box Me	ethod	×
Loudspeaker Parameters	*	User Input
Fs = 51.16 Hz Re = 5.50 ohms[dc]		Voice coil Resistance (ohm) 5.5
Le = 251.49 uH L2 = 220.61 uH R2 = 7.47 ohms		Membrane diameter (cm) 10.1
Qt = 0.32 Qes = 0.36 Oms = 3.12		Closed box volume (lit) 5.4
Mms = 9,20 grams Rms = 0,909186 kg/s Cms = 0,001078 m/N		Driver mounted in infinite baffle
Sd= 9.72 mers Sd= 80.12 cm^2 Bl = 6.597049 Tm		Nonlinear LSE Optimization
ETA = 0.33 % Lp(2.83V/1m) = 88.87 dB		Estimate TSP by LSE minimization $\overline{\mathbb{V}}$
Closed Box Method:		Estimate voice coil resistance Re 📃
Box volume = 5.40 liters Diameter= 10.10 cm		Estimate lossy inductor model 📝
		Le + L2 R2 -
		Export Cancel
	-	Calculate parameters Copy OK

Bild 3.9b: Berechnete TSP

7) Copy

Durch ,**Copy'** können die errechneten Werte als ASCII in beliebige Dateien kopiert werden. Die Ausgabe erscheint wie im Bild 3.9b gezeigt.

3.4 TSP-Ermittlung, Massemethode (Added Mass)

Die Prozedur zur Ermittlung der Thiele-Small-Parameter nach der Massemethode läuft wie folgt:

- 1) Kalibrieren
- 2) Testmasse festlegen.

In Abhängigkeit vom Durchmesser (Membranfläche) des zu messenden Lautsprechers ist ein Testmasse mit passendem Gewicht zu beschaffen. Auch bei der Massemethode (Bild 3.1b) soll durch Aufbringen einer Zusatzmasse eine Resonanzverschiebung zwischen 20% und 50% erreicht werden. Eine Zusatzmasse in der Größenordnung der Membranmasse M_{MD} führt in etwa zu einer Senkung der Resonanzfrequenz von 30%.

Sollte die Membranmasse nicht bekannt sein, so kann mit nebenstehendem Diagramm eine grobe Abschätzung vorgenommen werden.

Beispiel: Bei einem 8 Zoll Chassis mit $S_D = 230 \text{ cm}^2$ wird M_{MD} gem. Diagramm zwischen 15 und 50 Gramm betragen. Eine Zusatzmasse von 25 Gramm sollte für den ersten Versuch passen und zu einer auswertbaren Messung führen.

3) und 4)

Punkt 3 und Punkt 4 werden analog der Volumenmethode gehandhabt.

5) Die Messung des LS mit Zusatzmasse durchführen (s. Bild 3.1b)

Bild 3.10: Lautsprecher mit (blau) und ohne (rot) Zusatzmasse

6) Über das Menü Analyze \rightarrow Loudspeaker Parameters – Added Mass Method können nun die erforderlichen Parameter (R_{DC}, D_D, M_{ADD}) im Bereich ,User Input' eingegeben werden (siehe auch Abschnitt 3.1).

Loudspeaker Parameters - Added Mass Meth	od		×
Loudspeaker parameters:	*	User Input	
Fs = 51.16 Hz		Voice coil resistance (ohm)	5.5
Re = 5.50 onms[ac] Le = 251.49 uH L2 = 220.61 uH		Membrane diameter (cm)	10.1
R2 = 7.47 ohms Qt = 0.32		Added mass (g)	11
Qes = 0.36 Qms = 3.12 Mms = 10.06 grams		Driver mounted in infinite baf	fle 📃
Rms = 1.082545 kg/s Cms = 0.000905 m/N		Use constant compliance meth	od 📃
Vas = 8.16 liters 5d= 80.12 cm^2		Nonlinear LSE Optimization	
BI = 7.198573 Tm ETA = 0.27 %		Estimate TSP by LSE minimizat	ion 🔽
Lp(2.83V/1m) = 88.11 dB		Estimate voice coil resistance	Re 📃
Added Mass Method: Added mass = 11.00 grams		Estimate lossy inductor mo	del 🔽
Diamecer= 10.10 cm		Le +L2 R2	•
	Ŧ	Calculate parameters Copy	Cancel OK

Bild 3.11: Eingabe und Berechnung der TSP

7) Copy

Durch "**Copy to Clipboard"** oder "**Export in CSV File**" können die errechneten Parameter exportiert werden. Sofern mit mehreren Messungen Statistik betrieben werden soll, empfiehlt sich der CSV-Export, denn dann steht die volle Funktionalität von Excel zur Verfügung.

3.5 TSP-Ermittlung, bekannte Membranmasse (Fixed Mass)

Die Ermittlung der Thiele-Small-Parameter nach der "Fixed-Mass-Methode" setzt voraus, dass die Membranmasse M_M bekannt ist. Dies setzt die Wägung der Membran sowie der bewegten Teile wie Schwingspule, Sicke und Spinne zur Ermittlung von M_M voraus.

Bild 3.12: Bewegte Teile eines Lautsprechers (aus [5])

Die gesamte bewegte Masse M_{MS} inklusive Luftlast berechnet sich wie folgt:

$$\begin{split} M_{MS} &= M_M + M_A = M_M + 3,9382\text{E-4}\cdot\text{D}^3\\ & \text{mit}\;M_{MS},\,M_M,\,M_A\;\text{in}\;\text{g}\;\text{und}\;D\;\text{in}\;\text{cm} \end{split}$$

Wenn der Lautsprecher in einem IEC-Baffle montiert ist, verdoppelt sich MA.

Im Menü "Fixed Mass Method" wird dies nach Eingabe der "statischen Membranmasse M_M " und der Definition des Einbauzustandes (IEC = Driver mounted in Infinite Baffle oder free Air) entsprechend berücksichtig (s. Bild 3.13). Der Vorteil dieser Methode ist, dass mit einer Impedanzmessung der komplette Parametersatz ermittelt werden kann.

Loudspeaker Parameters - Fixed Mass Method				
Loudspeaker parameters: Fs = 40.28 Hz Re = 5.70 ohm[dc] Le = 57.74 uH L2 = 255.54 uH R2 = 2.72 ohm Qt = 0.50 Qes = 0.54 Qms = 7.99 Mms = 10.80 grams Rms = 0.341942 kg/s Cms = 1.445283 mm/N Vas = 13.66 liters Sd = 82.03 cm^2 Bl = 5.386642 Tm ETA = 0.16 % Lp(2.83V/1m) = 85.61 dB Fixed Mass Method: Driver unbaffled in free air Membrane mass = 10.38 g Membrane diameter = 10.22 cm	*	User Input Voice coil resistance (ohm) 5.7 Membrane diameter (cm) 10.22 Static membrane mass (g) 10.38 Driver mounted in infinite baffle Nonlinear LSE Optimization Estimate TSP by LSE minimization Estimate voice coil resistance Re Estimate lossy inductor model Le + L2 R2		
	Ŧ	Calculate parameters Copy OK		

Bild 3.13: Menü "Fixed Mass Method"

Wenn bekannt ist, dass die Hersteller MM auf dem oben erwähnten Weg ermitteln, kann

$$M_{M} = M_{MS}$$
 - $M_{A} = M_{MS}$ - 3,9382E-4 \cdot D³

mit der Angabe von M_{MS} aus der Herstellerspezifikation berechnet werden. Ferner ist die Information über die Einbausituation erforderlich (IEC, free Air).

Plausibilität von Herstellerangaben prüfen

Mit der "Fixed-Mass-Method" kann recht einfach die Plausibilität von Herstellerangaben ohne eigene Messungen geprüft werden. Dazu wird aus dem Herstellerdatenblatt mit einem geeigneten Tool (z.B. VituxCad - SPL-Trace) der Impedanzverlauf getraced und in LIMP als Txt- oder Zma-File importiert. Die für die Auswertung erforderlichen Daten für R_E, D und M_{MS} entnehmen wir dem Datenblatt des Herstellers. Die statische Membranmasse M_M wird mit der im vorherigen Absatz angegeben Formel berechnet.

Bild 3.14: Plausibilität von Herstellerdaten prüfen, Datenimport

Da laut Hersteller die Messungen in einem IEC-Baffle durchgeführt wurden, ergibt sich $M_M = 43.4 - 2*6.962 = 29.475$ g.

oudspeaker parameters:	User Input						
oddspeaker parameters.				Spec	Verification		Differenz
s = 51.85 Hz	Voice coil resistance (ohm)	5.4	fs	50	51,85	Hz	3,7%
te = 5.38 ohm[dc]		25.051	Re	5,4	5,38	Ohm	-0,4%
2 = 1265.69 µH	Membrane diameter (cm)	26.051	Qes	0,37	0,39		5,4%
12 = 225.01 ohm	Static mombrano maga (a)	20.475	Qms	9,9	7,77		-21,5%
(e = 0.166361 sH	Static membrane mass (g)	29.475	Qts	0,36	0.37		2,8%
2t = 0.37 Des = 0.39	Driver meyerted in infinit	haffle 🔽	Vas	92,6	86,64	dm3	-6,4%
Qms = 7.77	Driver mounted in infinite	2 Dame 🗠	Sd	533	533.00	cm2	0.0%
4ms = 43.40 grams			Mms	43.4	43.40	a	0.0%
lms = 1.849639 kg/s lms = 0.217134 mm/N	Nonlinear LSE Optimization		BL	14.1	14.04	N/A	-0.4%
/as = 86.64 liters	-		Cms	0.23	0.22	mm/N	-5.7%
d= 533.01 cm^2	Estimate ror by cochinin	iizauon 🕑	Rms	1.4	1.85	Ka/s	32.1%
I = 14.041255 Im TA = 3.01 %	Estimate voice coil resista	ince Re 🗹				1.0	
p(2.83V/1m) = 98.62 dB							
	Estimate lossy inducto	r model 🗹					
ixed Mass Method: Driver mounted in baffle		~		_			
1embrane mass = 29.48 g	Le + L2 K2 K	~	grau hir	nterlegte	Werte $=$ He	erstelle	rdaten
1embrane diameter = 26.05 cm			-	-			
	Calculate	Cancel					
	parameters	01					

Bild 3.15: Herstellerdaten im Vergleich zu den verifizierten Daten

Die aus der vom Herststeller veröffentlichten Impedanzmessung abgeleiteten TSP sind in recht guter Übereinstimmung mit den vom Hersteller ermittelten Daten. Dies ist nicht grundsätzlich der Fall, probieren Sie es aus!

3.6 TSP-Ermittlung, bekannter SPL (SPL-Methode)

Die Ermittlung der Thiele-Small-Parameter nach der "SPL-Methode" ist <u>nicht</u> in LIMP integriert. Voraussetzung ist, dass der SPL bei 1W/1m bekannt ist bzw. ermittelt wurde. Dann kann mit einer Impedanzmessung der vollständige TSP-Satz ermittelt werden.

Wie bei den anderen Methoden ist im Vorfeld Re und der effektive Membrandurchmesser D zu ermitteln. Die nachfolgende Free-Air-Messung liefert fs, Qts, Qms und Qes. Dann ergibt sich Vas unter Nutzung des bekannten SPL wie folgt:

$$V_{AS} = \eta_0 \cdot Q_{ES} / (9,04E-07 \cdot f_s^3) \text{ mit } \eta_0 = 10^{(SPL_{1W} - 112,1) / 10)$$

Die Umrechnung des SPL bei 2,83V in den SPL bei 1 W geschieht wie folgt:

 $SPL_{1w} = SPL_{2,83V} - 10 \cdot \log(8/Re)$

Die noch fehlenden Parameter lassen sich nunmehr mit den bekannten Formeln leicht berechnen.

4. LIMP, Arbeiten mit Overlay und Target

Ab dem Release 1.8 stehen nun auch in LIMP im Menü "Overlay" ein Overlay sowie Targets zur Verfügung. Die Funktion "Set as Overlay" lässt nur die Hinterlegung eines Overlays zu. Eine erneute Aktivierung der Funktion übernimmt die aktuelle Kurve ins Overlay und das alte Overlay wird automatisch gelöscht. Da die Overlayfunktion primär für die Berechnung der TSP gedacht ist, macht diese Einschränkung durchaus Sinn. Die Funktion "Set as Target" lässt die Hinterlegung beliebig vieler Targets zu. Dabei ist jedoch zu beachten, dass alle Targets die gleiche Farbe haben.

Ferner sind im Menü "Edit" mit Add und Subtract Overlay zwei einfache Rechenfunktionen integriert. Ein Anwendungsbeispiel für "Subtract Overlay" war bereits im Abschnitt Kompensation von Messleitungen angeführt.

Diese neue Funktionalität eröffnet Möglichkeiten, die unter anderem für qualitätssichernde Maßnahmen einsetzbar sind. Beispiele hierfür wären die Selektion von Lautsprecherchassis, Eingangsprüfungen im PA Verleih und anderes mehr. Dazu im Folgenden einige Beispiele und Hinweise zur Nutzung.

Eine Selektion oder eine Eingangsprüfung setzt voraus, dass Toleranzen oder Grenzwerte vorgegeben sind, gegen die geprüft wird. Wie lassen sich jetzt Toleranzen oder Grenzwerte in LIMP darstellen? Ganz einfach durch Import einer Textdatei mit der Endung "TXT" oder "ZMA". Die Erzeugung ist mit jedem Texteditor oder mit Excel möglich. Das Dateiformat ist wie folgt:

freq	mag	phase
91.1	0.0	0.0
91.1	22.0	0.0
116.9	0.0	0.0
116.9	22.0	0.0

Tabelle 4.1: ZMA-Datei für die Darstellung von Toleranz-
grenzen in der Vertikalen (hier $fs = 104 \pm 12,9 Hz$)

Bitte beachten Sie, dass die Dezimale als Punkt ausgeführt sein muss.

Bild 4.1: Toleranzfelder $fs \pm 3s$ und $Z(f) \pm 3s$

Selbstverständlich können auch gemessene - und anschließend manipulierte - Impedanzverläufe als Toleranzgrenzen verwendet werden (siehe Bild 4.1).

Bild 4.2 zeigt die Messung der Resonanzfrequenz von 32 kleinen Tiefmitteltönern. Aus einer vorherigen Bestellung war bekannt, dass die Resonanzfrequenz fs = 104 ± 12.9 Hz betrug. Mittels "Load target curve" wurden die Toleranzwerte aus Tabelle 4.1 als ZMA-File importiert.

Bild 4.2: Selektion von LS, Toleranzfeld $fs \pm 3s$

5. LIMP als RLC-Meter

LIMP ermittelt den Wert von Widerständen, Kondensatoren und Spulen durch Berechnung des resistiven, induktiven oder kapazitiven Anteils der Impedanz. Bild 5.1 zeigt als Beispiel die Impedanzkurve einer Spule mit einem nominalen Wert von 0,39 mH.

Bild 5.1: Impedanzverlauf einer 0,39 mH Spule

Über das Menü Analyze → RLC Impedance value at cursor position oder dem RLC-Button (rot markiert im Bild 5.1) erhält man das Ergebnis wie im Bild gezeigt. LIMP weist aus, dass die gemessene Impedanz an der Cursorposition einen resistiven Anteil von 0,33677 Ohm und einen imaginären induktiven Teil mit einem Wert von 0,39281 mH hat. Auf gleiche Weise werden mit LIMP auch Kondensatoren oder reine Widerstände gemessen.

Für die Durchführung von RLC-Messungen ist es wichtig, dass vor der Messung eine Kalibrierung durchgeführt wird, denn selbst bei kleinen Differenzen in der Empfindlichkeit beider Eingangskanäle der Soundkarte (z.B. 0.1dB) kann es passieren, dass LIMP unter bestimmten Bedingungen fehlerbehaftete Ergebnisse liefert, da die Phase einer Induktivität nahezu 90 Grad und die eines Kondensators nahezu -90 Grad beträgt.

Bild 5.2: Messaufbau für eine Impedanzmessung

Für den Fall, dass die über dem Generator gemessene Spannung V1 und die über der Impedanz Z gemessene Spannung V2 durch Unterschiede in der Empfindlichkeit der beiden Messkanäle verfälscht wird, kann das dazu führen, dass die ermittelte Impedanz auch Phasenwerte von mehr als 90 Grad ausweist und die Phase einen Sprung um 180 Grad macht (s. Bild 5.3).

Bild 5.3 zeigt das Ergebnis einer Kapazitätsmessung ohne Kalibrierung. Bis ca. 1200 Hz läuft die Phase bei nahezu +90 Grad und vermittelt so den Eindruck, dass es sich um eine Induktivität handelt. Bild 5.4 zeigt das Ergebnis der Messung nach einer Kalibrierung. Es ist zu sehen, dass die Phase sich im gesamten Frequenzbereich nun so verhält wie erwartet.

Bild 5.3: Unkalibriert ermittelte Impedanz eines Kondensators mit 4.7uF/250V

Bild 5.4: Kalibriert ermittelte Impedanz eines Kondensators mit 4.7uF/250V

Um richtige Messwerte für Kapazität und Induktivität zu erhalten, sollte der Cursor auf eine Frequenz gesetzt werden, bei der die Impedanz kleiner ist als 100 Ohm. Das stellt sicher, dass die Messungen im Bereich von ca. 1% Toleranz liegen (Erläuterung siehe Kapitel 6).

Die nun folgenden Beispiele sollen einen Eindruck von der Leistungsfähigkeit von LIMP als RLC-Meter im Vergleich zu einem 4-Leiter RLC-Meter (TH2821) und einem Mittelklasse RLC-Meter (Peaktech PT2165) vermitteln. Gemessen wurde mit einer Mittelklasse Soundkarte (EMU Tracker Pre) am Kopfhörerausgang ohne Spannungsteiler (siehe dazu auch Kapitel 6).

Alle Werte – mit Ausnahme von zwei kleinen Induktivitäten – liegen unterhalb einer Abweichung von 1%. Bei der Messung von Induktivitäten fällt auf, dass das Peaktech PT2165 fast deckungsgleiche Ergebnisse liefert und somit auch bei den Ausreißern (0,18mH und 0,33mH) vom TH2812 differiert.

Тур	Nominalwert	LIMP	PT2165	TH2821	∆ TH2821
Glatt, bipolar	4,7	4,675	4,674	4,678	-0,06%
Glatt, bipolar	8,2	8,745	8,739	8,755	-0,11%
Glatt, bipolar	33	34,328	34,300	34,390	-0,18%
Glatt, bipolar	47	49,064	49,070	49,140	-0,15%
Rauh, bipolar	150	172,948	173,150	172,260	0,40%
Rauh, bipolar	330	363,039	364,800	360,800	0,62%
Rauh, bipolar	560	547,577	556,300	548,400	-0,15%
Rauh, bipolar	1000	998,007	1035,700	992,100	0,59%

Tabelle 5.1: Vergleich LIMP vs. RLC-Meter, Kondensator, Werte in uF

Тур	Nominalwert	LIMP	PT2165	TH2821	∆ TH2821
Luftspule	0,18	0,183	0,181	0,188	-2,87%
Luftspule	0,27	0,270	0,269	0,272	-0,66%
Luftspule	0,33	0,337	0,337	0,345	-2,30%
Luftspule	0,47	0,479	0,477	0,482	-0,74%
Luftspule	0,82	0,834	0,833	0,840	-0,75%
Luftspule	1,20	1,229	1,228	1,234	-0,44%
HQ40/30	1,50	1,548	1,531	1,537	0,69%
Luftspule	1,50	1,520	1,519	1,526	-0,36%
Luftspule	1,80	1,833	1,833	1,835	-0,13%
Var	2,20	2,200	2,200	2,210	-0,44%
Var	2,70	2,710	2,705	2,716	-0,24%
Var	10,00	10,014	10,003	10,040	-0,26%
Var	14,50	14,514	14,494	14,543	-0,20%

Tabelle 5.2: Vergleich LIMP vs. RLC-Meter, Induktivität, Werte in mH

Bild 5.5: Vergleich LIMP vs. RLC-Meter, Widerstand, Werte in kOhm

LCR-Meter wie z.B. das Peaktech PT2165 zeigen neben den direkten Messwerten für C und L häufig noch Werte für Ersatzschaltbilder an (s. Bild 5.6). Wie bereits weiter oben bei der Betonung der Wichtigkeit einer Kalibrierung bereits ausgeführt, handelt es sich um eine Induktivität sofern der Phasenwinkel nahezu 90° beträgt und um eine Kapazität wenn er nahezu -90° beträgt, im Falle von 0° um einen reinen Widerstand. Solang der Betrag der Impedanz Z unter 1kOhm bleibt - das ist bei Impedanzmessungen an Lautsprechern fast immer so - finden ausschließlich die Serienersatzschaltungen Anwendung.

	Circuit	Dissipation	Conversion
L		$D = 2 \cdot \pi \cdot f \cdot Lp/Rp$ $D = 1/Q$	Ls = Lp/(1+D²) Rs = Rp·D²/(1+D²)
	Rs Ls	$D = Rs/2 \cdot \pi \cdot f \cdot Ls$ $D = 1/Q$	$Lp = (1+D^2) \cdot Ls$ $Rp = Rs \cdot (1+D^2)/D^2$
с		$D = \frac{1}{2} \cdot \pi \cdot f \cdot Cp \cdot Rp$ $D = \frac{1}{Q}$	$Cs = (1+D^2) \cdot Cp$ Rs = Rp \cdot D^2/(1+D^2)
	Rs Cs	$D = 2 \cdot \pi \cdot f \cdot Cs \cdot Rs$ $D = 1/Q$	$Cp = Cs/(1+D^2)$ $Rp = Rs \cdot (1+D^2)/D^2$
	Q = Xs/Rs	$D = Rs/Xs$, $Xs = 1/2 \cdot \pi \cdot f$	·Cs = 2·π·f·Ls

Bild 5.6: Ersatzschaltbilder für Kondensatoren und Induktivitäten [16]

Die Berechnungsgrundlagen für den Dissipationsfaktor respektive die Güte sind Bild 5.6 zu entnehmen. Im Folgenden wurde ein MKT-Kondensator mit nominell 10 uF als Messbeispiel gewählt.

Impedance at cursor X	Mittels der LCR-Funktion von LIMP wurde die Kapazität
Capacitive impedance R+1/jwC at frequency 996.23Hz	und der Widerstand bei 996,23 Hz mit den nebenstehen- den Werten ermittelt.
R = 72.33 mOhm	Daraus lässt sich der Dissipationsfaktor des Kondensators für die gewählte Frequenz berechnen:
C = 10.20 uF	$D = 2 \cdot \pi \cdot 996, 23 \cdot 10, 20E - 6 \cdot 0, 07233 = 0,0046$ Q = 1/D = 216
	Q = 1/D = 216

Zur Verifizierung wurden auch hier Vergleichsmessungen mit einem 4-Draht RCL-Meter bei drei unterschiedlichen Frequenzen und einem jeweils kleinen und großen Wert für das jeweilige Bauteil durchgeführt (s. Tabelle 5.3). Die Ergebnisse sind plausibel.

Wort Typ		finllr				TH2812				
wen	тур		С	R	D	Q	С	R	D	Q
10	MKT IT 250V	1000	10,20	0,0723	0,0046	215,82	10,20	0,0970	0,0062	161,29
		120	10,23	0,4903	0,0038	264,42	10,22	0,4100	0,0032	312,50
		100	10,24	0,5075	0,0033	306,26	10,23	0,3710	0,0025	400,00
560	Elko rauh IT 100V	1000	583,11	0,0163	0,0597	16,74	581,50	0,0300	0,1093	9,15
		120	594,94	0,0666	0,0299	33,47	596,60	0,0840	0,0382	26,18
		100	596,61	0,1023	0,0384	26,08	597,90	0,1020	0,0380	26,32
	-	e. 11		LIN	ИР			TH2	812	
Wert	Тур	f in Hz	L	LIN R	MP D	Q	L	TH2 R	2812 D	Q
Wert 0,39	Typ IT Luftspule 1.0mm	<mark>f in Hz</mark> 1000	L 0,393	LIN R 0,3368	//P D 0,1365	Q 7,33	L 0,389	TH2 R 0,3370	2 812 D 0,1378	Q 7,26
Wert 0,39	Typ IT Luftspule 1.0mm	<mark>f in Hz</mark> 1000 120	L 0,393 0,393	LIN R 0,3368 0,3212	//P D 0,1365 1,0837	Q 7,33 0,92	L 0,389 0,390	TH2 R 0,3370 0,3306	2 812 D 0,1378 1,1260	Q 7,26 0,89
Wert 0,39	Typ IT Luftspule 1.0mm	<mark>f in Hz</mark> 1000 120 100	L 0,393 0,393 0,372	LIN R 0,3368 0,3212 0,3282	D 0,1365 1,0837 1,4042	Q 7,33 0,92 0,71	L 0,389 0,390 0,389	TH2 R 0,3370 0,3306 0,3306	2812 D 0,1378 1,1260 1,3486	Q 7,26 0,89 0,74
Wert 0,39 15,0	Typ IT Luftspule 1.0mm Kernspule 0.5mm	f in Hz 1000 120 100 1000	L 0,393 0,393 0,372 15,82	LIN R 0,3368 0,3212 0,3282 4,9300	D 0,1365 1,0837 1,4042 0,0496	Q 7,33 0,92 0,71 20,16	L 0,389 0,390 0,389 15,11	TH2 R 0,3370 0,3306 0,3306 4,1380	2812 D 0,1378 1,1260 1,3486 0,0438	Q 7,26 0,89 0,74 22,84
Wert 0,39 15,0	Typ IT Luftspule 1.0mm Kernspule 0.5mm	f in Hz 1000 120 100 1000 120	L 0,393 0,393 0,372 15,82 15,91	LIN R 0,3368 0,3212 0,3282 4,9300 4,1300	D 0,1365 1,0837 1,4042 0,0496 0,3443	Q 7,33 0,92 0,71 20,16 2,90	L 0,389 0,390 0,389 15,11 15,13	TH2 R 0,3370 0,3306 0,3306 4,1380 4,0770	2812 D 0,1378 1,1260 1,3486 0,0438 0,3586	Q 7,26 0,89 0,74 22,84 2,79

Tabelle 5.3: Vergleich mit 4-Draht RLC-Meter

6. LIMP, Genauigkeit der Messung

Die Leistungsgrenzen von LIMP als RLC-Meter werden durch die Eingangsimpedanz der Soundkarte und den Messaufbau bestimmt. Beste Werte liefern die Messungen, wenn die Soundkarte eine hohe Eingangsimpedanz aufweist und ohne vorgeschalteten Spannungsteiler gearbeitet wird, denn der Parallelwiderstand des Spannungsteilers wirkt hier kontraproduktiv. Die Grenzen dessen, was noch sauber messbar ist, deuten sich im Messdiagramm durch "verrauschte" Messkurven an (siehe Bild 5.5, rechtes Teilbild, 100 kOhm).

Genau aus diesem Grund ist die ARTA-MessBox ein Kompromiss zwischen Messgenauigkeit und Bedienkomfort, der Messfehler sollte jedoch mit den Standardwerten der Application-Note [I] bis ca. 100 Ohm kleiner 1% sein.

Anmerkung: Wenn die eingesetzte Soundkarte eine Eingangsimpedanz > 500 kOhm aufweist, dann können die Werte des Spannungsteilers (R1/R2 und R3/R4) in der ARTA-MessBox um den Faktor 10 erhöht werden. Danach sollte der Messfehler bis 1000 Ohm kleiner 1% sein.

Bei üblichen Lautsprechermessungen und sauberem Messaufbau ist der Messfehler mit LIMP also kleiner als 1%. Sollte das nicht gegeben sein, so ist häufig eine der folgenden Fehlerquellen dafür verantwortlich:

- 1. Die Empfindlichkeit der Eingangskanäle der Soundkarte ist unterschiedlich
- 2. Die Soundkarte hat eine zu niedrige Eingangsimpedanz (10-20 kOhm)
- 3. Das Messkabel zwischen Leistungsverstärker und Lautsprecher ist zu lang

Abhilfe kann durch folgende Maßnahmen geschaffen werden:

- 1. Kalibrierung der Soundkarte (siehe Kapitel 2.2.1)
- 2. Eine Soundkarte mit hoher Eingangsimpedanz verwenden (Spezifikation prüfen, professionelle Soundkarten haben Eingangsimpedanzen von 1MOhm) oder einen Eingangsbuffer vorschalten (siehe z.B. http://www.maazl.de/electronic/LCR/LCR.html)
- 3. Bei zu langen Messkabeln gehen die induktiven oder kapazitiven Kabelanteile in die Messung ein. Das gilt auch für Übergangswiderstände an Klemmen oder Steckern. Die Devise lautet also:
 - a. Kurze Messkabel mit hinreichendem Querschnitt (ca. 1,5 mm² oder größer) verwenden
 - b. Falls längere Messkabel verwendet werden müssen, den Referenzwiderstand möglichst in der Nähe der Lautsprecherklemme anbringen.
 - c. Auf saubere Kontakte achten. Nur Stecker und Klemmen von unzweifelhafter Qualität verwenden ^{Anm.)}.

Anmerkung: "Messleitungen", wie im rechten Bild dargestellt, sind oft eine Fehlerquelle bei Messungen an Lautsprechern. Da die Kabel nicht selten nur an die Krokodilklemmen geklemmt sind, gibt es in der Abfolge "variable Übergangswiderstände", was der Reproduzierbarkeit von Messungen nicht gerade zuträglich ist. Wenn Sie derartige Produkte verwenden, dann bitte jede Verbindung nachlöten <u>und</u> vor Verwendung den Widerstand messen. Nicht selten haben diese Kabel auch nach dem Löten - aufgrund des verwendeten minderwertigen Materials - noch Widerstände zwischen 0,5 und 1 Ohm.

7. ARTA Application Notes

- [I] No 1: ARTA MessBox
- [II] No 2: RLC Messung mit LIMP
- [III] No 3: Why 64 Bit Processing
- [IV] No 4: Ermittlung des Freifeldfrequenzgangs
- [V] No 5: Die ARTA-Mikrofonkalibrierkammer fürs untere Ende
- [VI] No 6: Directivity und Polar
- [VII] No 7: Ermittlung der linearen Auslenkung mit STEPS
- [VIII] No 8: Wiederholmessungen mit der Scriptsprache Auto IT
- [IX] No 9: Automatische Polarmessung mit ARTA
- [X] No 10: In-Situ Messung zur Abschätzung von Absorptionskoeffizienten mit ARTA (demnächst)

8. Literatur

- [1] Mateljan, Ivo: "ARTA-Manuals"
- [2] D'Appolito, Joseph: "Lautsprechermesstechnik", Elektor Verlag, 1999.
- [3] Vance Dickason: Lautsprecherbau, Bewährte Rezepte für den perfekten Bau, Elektor Verlag, 6. Auflage, 2001
- [4] ARTA Hardware & Tools Manual
- [5] Anderson: Derivation of Moving Coil Loudspeaker Parameters using Plane Wave Tube Techniques, Master Thesis, 2003
- [6] Withold Waldman: Non-Linear Least Squares Estimation of Thiele-Small Parameters from Impedance Measurements, 1993, Preprint 3511
- [7] Neville Thiele, Richard Small: Loudspeaker Parameters, Tutorial, AES 124th Convention, 2008
- [8] AES2-2012: AES standard for acoustics Methods of measuring and specifying the performance of loudspeakers for professional applications – Dive units, AES, 2012
- [9] SB Acoustics: Technical note, Measuring Thiele/Small Parameters
- [10] Ivo Mateljan, Marjan Sokora: Estimation of Loudspeaker Driver Parameters, 5th Congress of the Alps Adria Acoustics Association, 2012
- [11] IEC 60268-5:2003: Elektroakustische Geräte, Teil 5: Lautsprecher
- [12] www.hifi-selbstbau.de: TSP checken einfach gemacht
- [13] IEC 60268-21:2018: Sound system equipment Part 21: Acoustical (output based) measurements
- [14] W. Klippel: AN 42 Tolerances of the Resonance Frequency fs, 2014
- [15] IEC 60268-22:2020: Sound system equipment Part 22: Electrical and mechanical measurements on transducers
- [16] Rohde & Schwarz, LCX-Series Manual, Chapter 5

9. Index

Ι

1
Impedanz Messfehler
K
Kopfhörer Impedanz
L
Lautsprecher effektive Membranfläche
Μ
Messkabel kompensieren15

Q

Qualitätssicherung Toleranzen eingeben	. 33
S	
Selektion von Lautsprecherchassis Soundkarte	33
ASIO Treiber	. 11
Spannungsteiler	9
Τ	
TSP	
Anregungspegel wählen	. 18
im Testgehäuse messen	. 27
Messen	. 18
Messlage des Lautsprechers	. 18
mit Zusatzmasse messen	. 29

V

Verbindungskabel	
Steckerbelegung	. 6

Annex - Kleinsignalbedingungen

Im Abschnitt 3.1.1 wird aufgeführt was die IEC 60268-22 unter Kleinsignalbedingungen versteht. Genannt sind 3 parallel geltende Bedingungen:

a) Maximale Anregungsspannung

 $U_{Test} < 0,1 \cdot U_{max}$, gleichbedeutend mit $U_{Test} < 0,1 \cdot \sqrt{Pmax \cdot Z}$ oder $P_{Test} < 0,01 \cdot P_{max}$

Sofern eine Kalibrierung von LIMP gemäß Abschnitt 2.2.1d erfolgt ist, kann die Anregungsspannung direkt abgelesen werden.

b) Maximale Verzerrung währen der Messung

Distortion < 40 dB < 1%

Bei der Messung mit Stepped Sine wird die maximale Verzerrung direkt unter der Grafik angezeigt und auch im File-Info dokumentiert (siehe hierzu Abschnitt 3.1.1, Bild 3.2a).

c) Temperaturerhöhung der Schwingspule ΔT < 5 K

Die Temperaturerhöhung ist leider nicht ohne weiteres zugänglich. Hier bedienen wir uns einer Abschätzung von Vance Dickason. Er führt in [3] aus, dass die maximale Temperaturerhöhung der Schwingspule durch den Schwingspulenträger (z.B. Papier, Aluminium, Kapton), die Isolierung des Schwingspulendrahtes und dem Kleber bestimmt wird, was bei modernen Lautsprechern zwischen 200° und 300° liegt. Unter der Annahme, dass sich die Temperatur in etwa proportional zur eingespeisten Leistung erhöht, kann die sich ergebende Temperatur mit der aktuell eingespeisten Leistung multipliziert mit einem "Temperaturfaktor K = T_{max} / P_{max} abgeschätzt werden.

Beispiel: Um wieviel Grad erhöht sich die Schwingspulentemperatur unter Beachtung der unter a) genannten Bedingung?

Gemäß Hersteller beträgt $P_{max} = 100$ W. Mit der Annahme, dass T_{max} VC = 250° beträgt, berechnet sich K wie folgt: K = 250/100 = 2,5 °/W. $P_{akt} < 0,01 \cdot P_{max} = 0,01 \cdot 100 = 1$ W $\rightarrow \Delta T = P$ akt \cdot K = 1 $\cdot 2,5 = 2,5^{\circ}$

Danach beträgt die geschätzte Erhöhung der Schwingspulentemperatur ca. 2,5°. Das ermöglicht in Kenntnis des Temperaturkoeffizienten α des Schwingspulenmaterials auch eine Abschätzung der Auswirkung auf die Thiele-Small-Parameter. Bleiben wir im oben gezeigten Beispiel. Für den Beispiellautsprecher sind gemäß Spezifikation folgende Werte gegeben:

Qe = 0,5; Qm = 8,0; Qt = 0,47; Re = 5,6 Ω und α Cu = 0,00385 Ω /Kelvin; α Al = 0,00401 Ω /Kelvin

Mit einer Kupferschwingspule berechnet sich Re(T+) = Re(T0) \cdot (1+ $\alpha \cdot \Delta T$) = 5,6 \cdot (1 + 0,00385 \cdot 2,5) = 5,65 Ω (10,99 Ω)

Das heißt, Re erhöht sich durch die 2,5° (250°) höhere Temperatur um 0,05 Ω (5,39 Ω). Das wirkt sich auf Qe und Qt wie folgt aus:

 $Qe' = Qe \cdot (Re(T1) / Re(T0)) = 0.5 \cdot (5.65/5.6) = 0.5045 (0.9813)$ Qt' = Qm \cdot Qe' / (Qm + Qe') = 8.0 \cdot 0.5045 / (8.0 + 0.5045) = 0.474 (0.874)

Anmerkung: Die (rot markierte Werte) gelten für 100 Watt Eingangsleistung.